Families of vector fields with many numerical invariants

نویسندگان

چکیده

<p style='text-indent:20px;'>We study bifurcations in finite-parameter families of vector fields on <inline-formula><tex-math id="M1">\begin{document}$S^2$\end{document}</tex-math></inline-formula>. Recently, Yu. Ilyashenko, Kudryashov, and I. Schurov provided examples (locally generic) structurally unstable id="M2">\begin{document}$3$\end{document}</tex-math></inline-formula>-parameter fields: topological classification these admits at least one numerical invariant. They also id="M3">\begin{document}$(2D+1)$\end{document}</tex-math></inline-formula>-parameter such that the has id="M4">\begin{document}$D$\end{document}</tex-math></inline-formula> invariants used those to construct with functional classification.</p><p style='text-indent:20px;'>In this paper, we locally generic id="M5">\begin{document}$4$\end{document}</tex-math></inline-formula>-parameter any prescribed number use them id="M6">\begin{document}$5$\end{document}</tex-math></inline-formula>-parameter invariants. We describe a class id="M7">\begin{document}$3$\end{document}</tex-math></inline-formula>-parameter tail an infinite sequence as invariant classification.</p>

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

construction of vector fields with positive lyapunov exponents

in this thesis our aim is to construct vector field in r3 for which the corresponding one-dimensional maps have certain discontinuities. two kinds of vector fields are considered, the first the lorenz vector field, and the second originally introced here. the latter have chaotic behavior and motivate a class of one-parameter families of maps which have positive lyapunov exponents for an open in...

15 صفحه اول

Asymptotic Vassiliev Invariants for Vector Fields

We analyse the asymptotical growth of Vassiliev invariants on non-periodic flow lines of ergodic vector fields on domains of R. More precisely, we show that the asymptotics of Vassiliev invariants is completely determined by the helicity of the vector field. As an application, we determine the asymptotic Alexander and Jones polynomials and give a formula for the asymptotic Kontsevich integral.

متن کامل

Asymptotic Link Invariants for Ergodic Vector Fields

We study the asymptotics of a family of link invariants on the orbits of a smooth volume-preserving ergodic vector field on a compact domain of the 3-space. These invariants, called linear saddle invariants, include many concordance invariants and generate an infinite-dimensional vector space of link invariants. In contrast, the vector space of asymptotic linear saddle invariants is 1-dimension...

متن کامل

The Euler-kronecker Invariants in Various Families of Global Fields

— The invariant in the title is, essentially, the constant term in the Laurent expansion at s = 1 of the corresponding Dedekind zeta function. We shall give (i) algebraic treatments of the invariants in the function field case, and (ii) numerical data for various families of number fields, with discussions on some striking phenomena. Résumé (L’invariants d’Euler-Kronecker dans des corps globaux...

متن کامل

Customized TRS invariants for 2D vector fields via moment normalization

The behavior of vector fields under translation, rotation and scaling differs withrespect to the underlying application. Moment invariants that are customized tothe specific problem can be constructed by means of normalization.In this paper, we calculate general TRS (translation, rotation, and scaling) mo-ment invariants for two-dimensional vector fields. As an example, we s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2021

ISSN: ['1553-5231', '1078-0947']

DOI: https://doi.org/10.3934/dcds.2021114